
Figure 1

To be honest with you, I wasn’t sure how to

proceed with my article series “Ugly Code”. For

some reason—crazy I know—I expected people

would read these articles and send me their own

opinions and code examples. Well, that never

happened—till now! Take a look at Listing 1, a

Java class that is part of an exercise here at ETH.

My first reaction to this piece of code was in

the realm of “what a piece of sh**”. However, it’s

not necessarily ugly at all, so let’s discuss it a bit.

First we notice that this is apparently some class

responsible for handling two kinds of messages.

To make it simple for the user of this class (i.e.

some developer), it provides two constructors,

one for each kind of message. So, why do I not

like this piece of code at all? First, it’s one class

representing two kinds of messages. To me this

already feels somehow wrong, just think about

what you’ll do if you have to extend one of the

messages or even add another? The other thing

is the comment of the second constructor. I

think the author of it already noticed that she/

he is doing something terribly wrong, after all

she/he fights against the language!

But this code might even be good code. First

off, this code works. It does the job and this is

(sadly) in most cases the first and most impor-

tant goal we have as software developers. Our

customers, in most cases, don’t care how beauti-

ful the code is or how easy it can be extended.

Well, until they have to pay lots of money to ex-

tend it because it was never written with future

modifications in mind. Further, especially as part

of an exercise, it’s fine to write such code, as long

as it’s yours and you wrote it as a student. The

moment this code is provided by a teaching as-

sistant I expect it to be well-thought-out and an

example for students to learn from!

Ugly Code #3

GREGOR WEGBERG – EMBRACES LANGUAGES

60 06/2014

// Java: Listing 1

// ...

public class DisplayMessage implements Serializable {
 // ...

 /**
 * Constructor to make a Message object
 */
 public DisplayMessage(String message, String username, boolean isMine) {
 super();
 this.message = message;
 this.username = username;
 this.isMine = isMine;
 this.isStatusMessage = false;
 this.date = Utils.getTime();
 }

 /**
 * Constructor to make a status Message object consider the parameters are
 * swaped from default Message constructor, not a good approach but have to
 * go with it.
 */
 public DisplayMessage(boolean status, String message, String username) {
 super();
 this.message = message;
 this.username = username;
 this.isMine = false;
 this.isStatusMessage = status;
 this.date = Utils.getTime();
 }

 // ...
}

61

Figure 2

Figure 3

There are two basic ways I would consider

to make it nicer; inheritance [Figure 1] or ag-

gregation (“has a” relation, [Figure 2]). Although

inheritance is a very nice feature in object ori-

ented languages, it leads in most cases to strong

coupling. Something we should try to avoid. Us-

ing aggregation with interfaces (search for “pro-

gram to an interface”) results in loosely coupling

and more flexibility (e.g. mocking messages for

testing would be much easier). It’s even possible

to combine both approaches [Figure 3] to mini-

mize code duplication by implementing com-

mon class members in an abstract class. I would

choose one of these three basic solutions, de-

pending on the requirements, but with a strong

inclination to the third solution.

What should we take away from this exam-

ple? First off, if you have to change something

because the language is in your way, think twice

before you proceed. Secondly, never forget that

software evolves over time, make sure you’re

ready for changes and can implement them as

easily as possible. This means you have to invest

a little more time in the first implementation,

but likely will save much more time in the long-

run. And as a teaching assistant, please try to be

an example and show your students what well-

thought-out code looks like.

Bildnachweise

Cover: © Manuel Braunschweiler
S. 7; S. 9: © VIS
S. 13: © VIS
S. 20-21: © VIS
S. 22-33: © VIS
S. 34-39: © VIS
S. 41-42: © VIS
S. 45: http://www.hdwallpapers.in/
S. 50-53: © VIS
S. 57: © Barry Barnes – Fotolia.com
S. 58: http://fanart.tv/

62

