
This is an
unpleasing

reality for me

% Matlab: Ugly example 1
% variables given by template: a, b, func, n
% ...
for k = 1:n
 p = (a + b) / 2;
 xk = [xk, p];
 if func(a) * func(p) < 0
 b = p;
 else
 a = p;
end
% ...

The Ugly
The last article ended with some quite

wise words: “Never underestimate the power

of meaningful names!” I think we have to talk

about this a bit more. Take a

short look at the ugly examples.

It would not surprise me if you

do not see any problem and this

is an unpleasing reality for me.

One huge challenge for me in Numerical Meth-

ods for CSE was the time which I had to spend to

decode and understand the solutions. The same

is true for many templates I got over the years

here at ETH Zurich. Somehow, a lot of the assis-

tants think of source code as a mathematical for-

mulae and correspondingly try to use the same

notations and names. This oftentimes

ends up with very stupid variable

names: “kkk” (this was for some code

like this one: k = k*3), “ijk” (the multi-

plication of all three loop counters) or

even “h” (a string containing some message for

an exception). Makes sense – or does it?

Ugly Code #2

GREGOR WEGBERG – I DO NOT LIKE SHORT NAMES

52 03/2014

It is a type of
slang we use
in our code

// Java: Ugly example 2
t = new TaskWithTimeout("some.exe", timeout);
r = t.run();
if (r == ProcessResult.SUCCESS) {
 // ...
}
else {
 okay = false;
 if (r == ProcessResult.FAILURE) {
 // ...
 }
 else {
 // ...
 }
}

Example 1 is a very simple part of a Matlab

solution. Because of its size and your education,

you may even know what is happening here.

However, is it because the code is self explana-

tory or because you know that it is part of a Bi-

section method? I am sure it is the latter.

Variable names with one or two charac-

ters are non-self-explanatory. There are

some exceptions such as “i”, “j”, and “k”

for loop counters. Every programmer

knows the meaning of them and uses them. It

is a type of slang we use in our code, you would

never find it in a dictionary, but everyone uses

it nonetheless. However, I would even argue

that those are worthy of a real name (“iteration”,

“iterCount”, “run”, …).

Example 2 is another simple example taken

from a Java method. Again, the example is sim-

ple and, because of this, you see after a short

time what is happening here. However, this is

again just because of the short size and your

training in reading source code.

I could change “t” and “r” to any

other character, the source code

would be still as explanatory as it

was before. Sure, we could imag-

ine that “t” stands for “Task” and “r” for “Result”,

but why not write those words right away in-

stead of using some meaningless characters? 

53

A dangerous way
of naming things

The Beauty
A nice and short article around the topic of

naming things right in source code files is ref-

erenced below.[1] It even goes a bit further and

briefly discusses the problem of words like

“Helper”, “Manager”, “Builder” and so on.

Example 2 was improved by incorporating

our observation above. We use “task” instead

of “t” and “taskResult” instead of

“r”. It may be wise to rename “r”

into “result” if the variable is not

necessarily containing a result of

a task, but rather just a result of some computa-

tion. It is often tempting to name variables after

the class or method name we call to get some

value for the variable in question (i.e. instead

of “t” use “taskWithTimeout”). I would plead

that this would still be better than the name

“t”. However, this is a dangerous way of naming

things. Variable names should reflect the con-

tent in a more abstract way. The name should

not depend on the implementation but rather

on what it represents. In the end

you should be able to read the

code like you would read a book

and get an idea what is happen-

ing, what is used, etc. By renaming “t” into “task”

we can use it with TaskWithTimeout, Task,

ExecuteVeryComplexComputationOnAllNodes

% Matlab: Nicer example 1
% variables given by template: a, b, func, n
% ...
for i=1:n
 midPoint = (a + b) / 2;
 intermediateResults = [intermediateResults, midPoint];

 if (func(a) * func(midPoint)) < 0
 b = midPoint;
 else
 a = midPoint;
 end
end
% ...

54

Learn to
type faster

Reference

[1]	 http://blog.codinghorror.com/i-shall-call-it-
somethingmanager/

or any other task related class/method. This al-

lows us to refactor our source code without re-

naming the variable because it represents the

basic idea of what is going on.

In the nicer-looking Example 1, I basically

gave every variable a name that represents their

content better. For example, “p” is now

“midPoint”, which clearly expresses

that it is a point in the middle of some-

thing. Of course, we could extend the

name to reflect that it is in the middle of “a” and

“b”. However, I decided not to include this, as it

should be evident from the context in this case.

I have talked to different people about this

topic multiple times. The most frequently used

argument for short identifiers, or even single-

character names, is the fact that it is faster to

type. Seriously?! Compared to, well, any other

activity we do as programmers, the time we

spend for writing around 10 characters

more for each variable should be com-

pletely irrelevant. However, if it is a real

problem to you: learn to type faster.

This can be practiced! Plus, you save a lot of time

down the line.� ö

// Java: Nicer example 2
task = new TaskWithTimeout("some.exe", timeout);
taskResult = task.run();
if (taskResult == ProcessResult.SUCCESS) {
 // ...
}
else {
 okay = false;
 if (taskResult == ProcessResult.FAILURE) {
 // ...
 }
 else {
 // ...
 }
}

55

