


Ugly Code #1
Let us talk about ugly and beautiful string concatenation, and unnamed constants.

//Ugly example 1:
Runtime rt = Runtime.getRuntime();

Process pr = rt.exec("C:\\Windows\\Microsoft.NET\\Framework64\\
v4.0.30319\\csc.exe /R:System.Diagnostics.Contracts.dll /nologo /
target:library /out:" + f + codeCompExt + " " + f + codeExt);

System.out.print("Code compilation: ");

//Ugly example 2:
for (String methodName : testMethodNames) {
 classStr.append("\t\ttry {\n");

 classStr.append("\t\t\t" + methodName + "();\n");

 classStr.append("\t\t} catch (Exception e) {\n");
 classStr.append("\t\t\t//throw new RuntimeException(e);\n");
 classStr.append("\t\t\tSystem.out.println(\"
 + methodName
 + ": \" + e.getClass().getName() + \": \" +
e.getMessage());\n");
 classStr.append("\t\t}\n");
}

The Ugly
Why do I consider this code ugly? Firstly, it is

hard to parse with just a quick glance; secondly,

I have to read the strings to know what they re-

present; and thirdly, applying changes is harder

than it should be. Let us take a closer look at the-

se three problems.

Quite often we have to navigate through

several source code files to find the place we

have to work on. If we do not know where

exactly this location is, we scroll through the

code and glance at every source code line until

something catches our attention. Ideally, this

will only be the line we are searching for. How-

ever, in the case of both examples, the sheer

length of the lines will catch our attention for

no reason. This slows us down and distracts

us. The source code highlighting of our editor

51

is of course of no help, as in most cases it high-

lights strings with highly contrasted colours. I

understand if you think that this point is not as

important as I think that it is. That's fine, as the

following remarks are more important.

The second problem

is that I have to parse the

strings to understand ex-

actly what the lines do. This

includes realizing that in

Java, the string “\\” results

in a string containing one backslash, that “\t” is

replaced by a tabulator, “\n” by a new line and

so on. Surely this is not a huge problem as we

get used to parsing such very widely used place

holders. However, something like “\t\ttry {\n” is

already not an easy situation to realize that the

result is going to be a string with two tabs fol-

lowed by a “try {”. If you still think this is not a

problem, just take a look at the second example

and try to explain to yourself what the output is

going to be without needing a lot of time to just

parse the string constants. This can be hugely

improved.

What if you have to change the path in the

first example? What if

you want to add some

code to the output in

the second?

In the first examp-

le, you could change

the one string, but not quite that easily, as the

source file contains three more locations with

the same path. Therefore, you have to check the

whole source file for possible changes. Very im-

practical. You do not think such changes happen

often enough to care? Well, I could not run the

underlying application of the first example as it

expects the .NET compiler to be at the default

file path. I have multiple systems where this is

not true and I would have to change it every-

//Beauty example 1:
private static final String DOT_NET_COMPILER_FILEPATH = "C:\\Windows\\Mi	
	 crosoft.NET\\Framework64\\v4.0.30319\\csc.exe";
private static final String DOT_NET_COMPILER_FLAGS = "/R:System.Diag	
	 nostics.Contracts.dll /nologo /target:library";
private static final String DOT_NET_COMPILER_EXEC_FORMATSTR = "%s %s /	
	 out:%1$s.dll %1$s.cs";
}

Runtime rt = Runtime.getRuntime();
Process pr = rt.exec(String.format(DOT_NET_COMPILER_EXEC_FORMATSTR, DOT_	
	 NET_COMPILER_FILEPATH, DOT_NET_COMPILER_FLAGS, f));
System.out.print("Code compilation: ");

 I am not going to be
a happy guy if I have
to spend time finding

all those locations.

52



where. If I need to spend time trying to find all

those locations, I will not be happy.

To add new code to the output in the second

example you will always spend some time try-

ing to find out which line has to be modified,

and how to structure the code from scratch to

make it look less cluttered. All those changes are

cumbersome and can be made easier to do.

The beauty
Just look at how nice the for-each loop now

looks in the improved second example. Let us

first talk about the introduced improvements,

followed by some downsides.

First of all, the most important improvement

is the readability of the source code. We have

removed the unnamed constant strings and

put them at the top of our class. Now, if we are

reading the method bodies, we can think about

what they do and what their business logic is,

instead of what the exact calls/strings that are

produced look like. If we want to change the

strings, we know where to find them. There is

one single convenient and well visible place for

all of them. A change to the strings now applies

to all the locations in which they are used for

calls.

Giving those strings meaningful names im-

proves our understanding of what each line

does. Just look at the variable “f” in the first ex-

ample: do you know right away what it stands

for? Of course not, although you may already

have the intuition that it is a file name. However,

if you look at our names for the string constants,

you have immediate knowledge of what they

stand for. This is in many situations very han-

dy and much better than parsing those long

strings at every line.

//Beauty example 2:
private static final String METHOD_CALL_FORMATSTR = "\t\ttry {\n"
		 + "\t\t\t%1$s();\n"
		 + "\t\t} catch (Exception e) {\n"
		 + "\t\t\t//throw new RuntimeException(e);\n"
		 + "\t\t\tSystem.out.println(\"%1$s: \" + e.getClass().	
		 getName() + \": \" + e.getMessage());\n"
		 + "\t\t}\n";

for(String methodName : testMethodNames) {
	 classStr.append(String.format(METHOD_CALL_FORMATSTR, methodNa	
		 me));
}

Of course, there are some downsides to this

approach. Firstly, formatting strings in Java, as

in many other languages, uses a bit of an obs-

cure place holder syntax. For example, “%1$s” is

a place holder for a string and uses the second

parameter passed to String.format. Howe-

ver, we also did get used to “\t”, “\n”, “\\”, and so

on. Why should we not also get used to this no-

tation? There is also a notion of order in which

DOT_NET_COMPILER_FILEPATH = r'C:\Windows\Microsoft.NET\Framework64\	
	 v4.0.30319\csc.exe'
DOT_NET_COMPILER_FLAGS = '/R:System.Diagnostics.Contracts.dll /nologo /	
	 target:library'
DOT_NET_COMPILER_EXEC_FORMATSTR = '%(COMPILER_FILEPATH)s %(COMPILER_	
	 FLAGS)s /out:%(FILENAME)s.dll %(FILENAME)s.cs'

print(DOT_NET_COMPILER_EXEC_FORMATSTR % ({
 'COMPILER_FILEPATH': DOT_NET_COMPILER_FILEPATH,
 'COMPILER_FLAGS': DOT_NET_COMPILER_FLAGS,
 'FILENAME': 'someFile'
}))

we pass the values toString.format: chan-

ging it will generate wrong results. This can be

improved by using libraries that allow named

place holders — "{FILENAME}.cs" — and

taking some kind of key-value pair structures to

replace the place holders with the expected va-

lue. For example, Python provides such functio-

nality out of the box. Never underestimate the

power of meaningful names!	 	 ü

54

